Constraining chaos: Enforcing dynamical invariants in the training of reservoir computers

Author:

Platt Jason A.1ORCID,Penny Stephen G.23ORCID,Smith Timothy A.34ORCID,Chen Tse-Chun5ORCID,Abarbanel Henry D. I.16ORCID

Affiliation:

1. Department of Physics, University of California San Diego 1 , San Diego, California 92093, USA

2. Sofar Ocean 2 , 28 Pier Annex, San Francisco, California 94105, USA

3. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder 3 , Boulder, Colorado 80309, USA

4. Physical Sciences Laboratory, National Oceanic and Atmospheric Administration 4 , Boulder, Colorado 80305, USA

5. Pacific Northwest National Laboratory 5 , 902 Battelle Blvd, Richland, Washington 99354, USA

6. Marine Physical Laboratory, Scripps Institution of Oceanography 6 , 9500 Gilman Drive, La Jolla, California 92093, USA

Abstract

Drawing on ergodic theory, we introduce a novel training method for machine learning based forecasting methods for chaotic dynamical systems. The training enforces dynamical invariants—such as the Lyapunov exponent spectrum and the fractal dimension—in the systems of interest, enabling longer and more stable forecasts when operating with limited data. The technique is demonstrated in detail using reservoir computing, a specific kind of recurrent neural network. Results are given for the Lorenz 1996 chaotic dynamical system and a spectral quasi-geostrophic model of the atmosphere, both typical test cases for numerical weather prediction.

Funder

Office of Naval Research

National Oceanic and Atmospheric Administration

Cooperative Institute for Research in Environmental Sciences

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference70 articles.

1. A new approach to linear filtering and prediction problems;J. Basic Eng.,1960

2. J. Mandel , “A brief tutorial on the ensemble Kalman filter,” arXiv:0901.3725 (2009).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3