Ionization energies and ionization-induced structural changes in 2-phenylethylamine and its monohydrate

Author:

Yifrach Yair1,Rahimi Rami1ORCID,Baraban Joshua H.2ORCID,Bar Ilana1ORCID

Affiliation:

1. Department of Physics, Ben-Gurion University of the Negev 1 , Beer-Sheva 8410501, Israel

2. Department of Chemistry, Ben-Gurion University of the Negev 2 , Beer-Sheva 8410501, Israel

Abstract

We report the resonance-enhanced two-photon ionization combined with various detection approaches and quantum chemical calculations of biologically relevant neurotransmitter prototypes, the most stable conformer of 2-phenylethylamine (PEA), and its monohydrate, PEA-H2O, to reveal the possible interactions between the phenyl ring and amino group in the neutral and ionic species. Extracting the ionization energies (IEs) and appearance energy was achieved by measuring the photoionization and photodissociation efficiency curves of the PEA parent and photofragment ions, together with velocity and kinetic energy-broadened spatial map images of photoelectrons. We obtained coinciding upper bounds for the IEs for PEA and PEA-H2O of 8.63 ± 0.03 and 8.62 ± 0.04 eV, within the range predicted by quantum calculations. The computed electrostatic potential maps show charge separation, corresponding to a negative charge on phenyl and a positive charge on the ethylamino side chain in the neutral PEA and its monohydrate; in the cations, the charge distributions naturally become positive. The significant changes in geometries upon ionization include switching of the amino group orientation from pyramidal to nearly planar in the monomer but not in the monohydrate, lengthening of the N–H⋯π hydrogen bond (HB) in both species, Cα–Cβ bond in the side chain of the PEA+ monomer, and the intermolecular O–H⋯N HB in PEA-H2O cations, leading to distinct exit channels.

Funder

Israel Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3