Affiliation:
1. School of Mechanical Engineering, Korea University 1 , Seoul 02841, South Korea
2. Department of Chemistry, College of Science, King Saud University 2 , Riyadh 11451, Saudi Arabia
3. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago 3 , Chicago, Illinois 60607-7022, USA
Abstract
Spray cooling has been used to quench metal slabs during casting, cool nuclear reactors, suppress accidental fires, and remove heat from high-power density electronics. In particular, the miniaturization of electronic devices inevitably results in an increased power density or heat flux on the microelectronics surfaces and poses a threat of a thermal shutdown of such devices when cooling is insufficient. Surface nanotexturing effectively augments additional liquid-to-substrate surface area, thereby increasing cooling capability, as well as an effective heat transfer coefficient. In spray cooling, surface dynamic wettability also affects drop impact dynamics and subsequent coolant evaporation on a hot surface. Herein, we introduced various nanotextured surfaces and affected dynamic wettability using the so-called thorny-devil nanofibers, nickel nanocones, Teflon and titania nanoparticles, and zinc nanowires. The effect of these different nanoscale architectures on drop impact phenomena and subsequent evaporative cooling was investigated. These nanotextured surfaces were fabricated using various deposition methods, including electrospinning, electroplating, supersonic spraying, aerosol deposition, and chemical bath deposition. We found that the surface with greater dynamic wettability related to the hydrodynamic focusing considerably improved the heat removal capability by furthering the Leidenfrost limit and facilitating drop spreading. In particular, the thorny-devil nanofiber surface yielded the highest heat flux at all ranges of the Reynolds and Weber numbers. Spray cooling on a model electronic kit also confirmed that the thorny-devil nanofibers were most effective in cooling the surface of the model kit during multiple cycles of water spraying.
Funder
National Research Foundation of Korea
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献