Drop impact phenomena and spray cooling on hot nanotextured surfaces of various architectures and dynamic wettability

Author:

Park Chanwoo1,Seol Jaewoo1,Aldalbahi Ali2ORCID,Rahaman Mostafizur2,Yarin Alexander L.13ORCID,Yoon Sam S.1ORCID

Affiliation:

1. School of Mechanical Engineering, Korea University 1 , Seoul 02841, South Korea

2. Department of Chemistry, College of Science, King Saud University 2 , Riyadh 11451, Saudi Arabia

3. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago 3 , Chicago, Illinois 60607-7022, USA

Abstract

Spray cooling has been used to quench metal slabs during casting, cool nuclear reactors, suppress accidental fires, and remove heat from high-power density electronics. In particular, the miniaturization of electronic devices inevitably results in an increased power density or heat flux on the microelectronics surfaces and poses a threat of a thermal shutdown of such devices when cooling is insufficient. Surface nanotexturing effectively augments additional liquid-to-substrate surface area, thereby increasing cooling capability, as well as an effective heat transfer coefficient. In spray cooling, surface dynamic wettability also affects drop impact dynamics and subsequent coolant evaporation on a hot surface. Herein, we introduced various nanotextured surfaces and affected dynamic wettability using the so-called thorny-devil nanofibers, nickel nanocones, Teflon and titania nanoparticles, and zinc nanowires. The effect of these different nanoscale architectures on drop impact phenomena and subsequent evaporative cooling was investigated. These nanotextured surfaces were fabricated using various deposition methods, including electrospinning, electroplating, supersonic spraying, aerosol deposition, and chemical bath deposition. We found that the surface with greater dynamic wettability related to the hydrodynamic focusing considerably improved the heat removal capability by furthering the Leidenfrost limit and facilitating drop spreading. In particular, the thorny-devil nanofiber surface yielded the highest heat flux at all ranges of the Reynolds and Weber numbers. Spray cooling on a model electronic kit also confirmed that the thorny-devil nanofibers were most effective in cooling the surface of the model kit during multiple cycles of water spraying.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3