Improved proton-transfer barriers with van der Waals density functionals: Role of repulsive non-local correlation

Author:

Seyedraoufi S.1ORCID,Berland Kristian1ORCID

Affiliation:

1. Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, Ås, Norway

Abstract

Proton-transfer (PT) between organic complexes is a common and important biochemical process. Unfortunately, PT energy barriers are difficult to accurately predict using density functional theory (DFT); in particular, using the generalized gradient approximation (GGA) tends to underestimate PT barriers. Moreover, PT typically occurs in environments where dispersion forces contribute to the cohesion of the system; thus, a suitable exchange-correlation functional should accurately describe both dispersion forces and PT barriers. This paper provides benchmark results for the PT barriers of several density functionals, including several variants of the van der Waals density functional (vdW-DF). The benchmark set comprises small organic molecules with inter- and intra-molecular PT. The results show that replacing GGA correlation with a fully non-local vdW-DF correlation increases the PT barriers, making it closer to the quantum chemical reference values. In contrast, including non-local correlations with the Vydrov-Voorhis method or dispersion-corrections at the DFT-D3 or the Tkatchenko–Scheffler level has barely any impact on the PT barriers. Hybrid functionals also increase and improve the energies, resulting in an excellent performance of hybrid versions of vdW-DF-cx and vdW-DF2-B86R. For the formic acid dimer PT system, we analyzed the GGA exchange and non-local correlation contributions. The analysis shows that the repulsive part of the non-local correlation kernel plays a key role in the PT energy barriers predicted with vdW-DF.

Funder

Norges Forskningsråd

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3