Affiliation:
1. Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
Abstract
We perform a gas gun experiment by shock loading tantalum samples of varying grain structures to assess the suitability of a numerical model for simulating spall behavior. The observed differences in spall strength, as well spallation and re-compression history, are not captured in uncalibrated hydrodynamic simulations. An optimization is performed on the Johnson spall model to determine the best parameters that fit the observed trends. Linear stability analysis is employed to motivate bounds on those parameters. Herein, optimized simulations agree well with the experimental results, reproducing pullback depth and recompression timescales across the different samples tested. Further, the observed pullback time of the single crystal sample was found to imply, via the stability analysis, a percolation threshold in good agreement with the theoretical value for a body centered cubic lattice. Therefore, the combined linear stability and percolation analysis shows promise and may be applied to other materials with diverse microstructures. Collectively, the findings demonstrate that the model is suitable for reproducing spall-induced free surface behavior across various microstructures, but also points to caution in using model coefficients for uncalibrated microstructures.
Funder
U.S. Department of Energy
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献