Data-efficient deep reinforcement learning with expert demonstration for active flow control

Author:

Zheng Changdong1,Xie Fangfang1ORCID,Ji Tingwei1,Zhang Xinshuai1ORCID,Lu Yufeng1,Zhou Hongjie1,Zheng Yao1ORCID

Affiliation:

1. School of Aeronautics and Astronautics, Zhejiang University, Zhejiang 310027, China

Abstract

Deep reinforcement learning (RL) is capable of identifying and modifying strategies for active flow control. However, the classic active formulation of deep RL requires lengthy active exploration. This paper describes the introduction of expert demonstration into a classic off-policy RL algorithm, the soft actor-critic algorithm, for application to vortex-induced vibration problems. This combined online-learning framework is applied to an oscillator wake environment and a Navier–Stokes environment with expert demonstration obtained from the pole-placement method and surrogate model optimization. The results show that the soft actor-critic framework combined with expert demonstration enables rapid learning of active flow control strategies through a combination of prior demonstration data and online experience. This study develops a new data-efficient RL approach for discovering active flow control strategies for vortex-induced vibration, providing a more practical methodology for industrial applications.

Funder

Natural Science Foundation of Zhejiang Province

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3