Study on flexible surface dielectric barrier discharge plasma film for in situ inactivation of bacteria and viruses

Author:

Guo Yuntao1ORCID,Fang Mengqi2,Zhang Liyang1ORCID,Sun Jingjun1,Wang Xinxin1,Tie Jinfeng3,Zhou Qun4,Zhang Linqi2,Luo Haiyun1ORCID

Affiliation:

1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China

2. Center for Global Health and Infectious Diseases, Comprehensive AIDS Research Center, and Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China

3. Disinfection and Infection Control, Chinese PLA Center for Disease Prevention and Control, Beijing 100071, China

4. Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China

Abstract

COVID-19 is still pandemic in the world although it has lasted for more than two years, in situ real-time disinfection of curved surfaces in public places is extremely urgent. A flexible plasma film based on surface dielectric barrier discharge is proposed in this study. In situ disinfection effect and the influence of curvature on the performance are studied. The results showed that the film could in situ inactivate a variety of pathogens. Specifically, 10 min plasma treatment results in a log reduction of 3.10, 3.42, and 3.03 for Escherichia coli, Staphylococcus aureus, and vesicular stomatitis virus, respectively. The discharge power and disinfection effect of the film are independent of the curvature, which proves that it can be used for in situ disinfection of curved surfaces. It is speculated that the combined effects of a strong electric field and radical etching physical damage as well as the chemical damage of reactive oxygen and nitrogen species to the protein are the main reasons for the inactivation of pathogens. The inhibition of the film to Omicron type SARS-CoV-2 pseudovirus is 99.3%, and the killing rate to natural bacteria is 94.3%. The film can run for at least 10 h without significant reduction in disinfection effect. In addition, large-scale and digitalization increase the practical potential of a disinfection film. In conclusion, this film is expected to realize in situ real-time disinfection of curved surfaces such as the buttons of the elevator or instrument and door handles, which is of great significance in blocking the spread of COVID-19.

Funder

China Postdoctoral Science Foundation

national key research and development program of china

State Key Laboratory of Power System Operation and Control

Tsinghua University Spring Breeze Fund

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3