Formation of tubular conduction channel in a SiGe(P)/Si core/shell nanowire heterostructure

Author:

Wang Xuejing1ORCID,Lin Yung-Chen1,Tai Chia-Tse2,Lee Seok Woo3,Lu Tzu-Ming4ORCID,Shin Sun Hae Ra1,Addamane Sadhvikas J.4ORCID,Sheehan Chris1,Li Jiun-Yun2567ORCID,Kim Yerim1,Yoo Jinkyoung1ORCID

Affiliation:

1. Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

2. Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan

3. School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore

4. Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA

5. Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan

6. Graduate School of Advanced Technology, National Taiwan University, Taipei 10617, Taiwan

7. Taiwan Semiconductor Research Institute, Hsinchu 300091, Taiwan

Abstract

Realizing a tubular conduction channel within a one-dimensional core–shell nanowire (NW) enables better understanding of quantum phenomena and exploration of electronic device applications. Herein, we report the growth of a SiGe(P)/Si core/shell NW heterostructure using a chemical vapor deposition coupled with vapor–liquid–solid growth mechanism. The entire NW heterostructure behaves as a p-type semiconductor, which demonstrates that the high-density carriers are confined within the 4 nm-thick Si shell and form a tubular conduction channel. These findings are confirmed by both calculations and the gate-dependent current–voltage ( I d– V g) characteristics. Atomic resolution microscopic analyses suggest a coherent epitaxial core/shell interface where strain is released by forming dislocations along the axial direction of the NW heterostructure. Additional surface passivation achieved via growing a SiGe(P)/Si/SiGe core/multishell NW heterostructure suggests potential strategies to enhance the tubular carrier density, which could be further modified by improving multishell crystallinity and structural design.

Funder

Los Alamos National Laboratory

Center for Integrated Nanotechnologies

Ministry of Science and Technology, Taiwan

Ministry of Education

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Reference45 articles.

1. Photogating in Low Dimensional Photodetectors

2. Synthesis and Applications of III–V Nanowires

3. Epitaxial Pb on InAs nanowires for quantum devices

4. Oxide-Confined Formation of Germanium Nanowire Heterostructures for High-Performance Transistors

5. S. Barraud, B. Previtali, C. Vizioz, J. M. Hartmann, J. Sturm, J. Lassarre, C. Perrot, P. Rodriguez, V. Loup, A. Magalhaes-Lucas, R. Kies, G. Romano, M. Cassé, N. Bernier, A. Jannaud, A. Grenier, and F. Andrieu, in IEEE Symposium on VLSI Technology (IEEE, 2020), p. 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3