Porphyrin-based nanoporous materials for photocatalytic applications

Author:

Lee Jeong Heon1ORCID,Kim Younghun1ORCID,Oh Sangyoon1ORCID,Jang Woo-Dong1ORCID

Affiliation:

1. Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, South Korea

Abstract

Alongside the unique photophysical properties, porphyrin derivatives play key roles in light harvesting of photosynthetic organisms. Due to their symmetrical structure, porphyrin derivatives serve as excellent building blocks for various porous materials, encompassing metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, and amorphous porous organic polymers. These materials capitalize on the beneficial characteristics of porphyrins, such as their absorption capabilities, redox activity, and coordination chemistry, while leveraging the surface area and porosity inherent in porous frameworks. Porphyrin-based porous materials are explored for diverse applications including gas storage, energy storage, catalysis, separation, sensing, and environmental remediation. Owing to their excellent photophysical properties, these nanoporous materials are suitable for light harvesting and photocatalysis applications. This review emphasizes the potential of artificial light-harvesting catalysts based on porphyrin-based porous materials for solar energy applications. Researchers aim to optimize material properties and design innovative architectures to enhance performance in solar energy conversion and photocatalytic applications, making this a rapidly evolving field. Specific applications discussed in the review include photocatalytic CO2 reduction, photocatalytic water splitting, and perspectives on future developments in the field of porphyrin-based nanoporous materials for artificial light harvesting.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3