On the incorporation of conservation laws in machine learning tabulation of kinetics for reacting flow simulation

Author:

Readshaw Thomas1ORCID,Jones W. P.1ORCID,Rigopoulos Stelios1ORCID

Affiliation:

1. Department of Mechanical Engineering, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom

Abstract

Tabulation of chemical mechanisms with artificial neural networks (ANNs) offers significant speed benefits when computing the real-time integration of reaction source terms in turbulent reacting flow simulations. In such approaches, the ANNs should be physically consistent with the reaction mechanism by conserving mass and chemical elements, as well as obey the bounds of species mass fractions. In the present paper, a method is developed for satisfying these constraints to machine precision. The method can be readily applied to any reacting system and appended to the existing ANN architectures. To satisfy the conservation laws, certain species in a reaction mechanism are selected as residual species and recalculated after ANN predictions of all of the species have been made. Predicted species mass fractions are set to be bounded. While the residual species mass fractions are not guaranteed to be non-negative, it is shown that negative predictions can be avoided in almost all cases and easily rectified if necessary. The ANN method with conservation is applied to one-dimensional laminar premixed flame simulations, and comparisons are made with simulations performed with direct integration (DI) of chemical kinetics. The ANNs with conservation are shown to satisfy the conservation laws for every reacting point to machine precision and, furthermore, to provide results in better agreement with DI than ANNs without conservation. It is, thus, shown that the proposed method reduces accumulation of errors and positively impacts the overall accuracy of the ANN prediction at negligible additional computational cost.

Funder

Engineering and Physical Sciences Research Council

Rolls-Royce

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3