Efficient and stable activation by microwave annealing of nanosheet silicon doped with phosphorus above its solubility limit

Author:

Tsai Chun-Hsiung1,Savant Chandrashekhar P.2,Asadi Mohammad Javad3,Lin Yu-Ming4,Santos Ivan5ORCID,Hsu Yu-Hsiang1ORCID,Kowalski Jeffrey6,Pelaz Lourdes5ORCID,Woon Wei-Yen7ORCID,Lee Chih-Kung1ORCID,Hwang James C. M.238ORCID

Affiliation:

1. Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan

2. Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA

3. School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA

4. Research & Development, Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan

5. Department of Electronics, University of Valladolid, Valladolid, Spain

6. DSG Technologies, Inc., San Jose, California 95131, USA

7. Department of Physics, National Central University, Jungli, Taiwan

8. International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

Abstract

The relentless scaling of semiconductor devices pushes the doping level far above the equilibrium solubility, yet the doped material must be sufficiently stable for subsequent device fabrication and operation. For example, in epitaxial silicon doped above the solubility of phosphorus, most phosphorus dopants are compensated by vacancies, and some of the phosphorus-vacancy clusters can become mobile around 700 °C to further cluster with isolated phosphorus ions. For efficient and stable doping, we use microwave annealing to selectively activate metastable phosphorus-vacancy clusters by interacting with their dipole moments, while keeping lattice heating below 700 °C. In a 30-nm-thick Si nanosheet doped with 3 × 1021 cm−3 phosphorus, a microwave power of 12 kW at 2.45 GHz for 6 min resulted in a free-electron concentration of 4 × 1020 cm−3 and a junction more abrupt than 4 decades/nm. The doping profile is stable with less than 4% variation upon thermal annealing around 700 °C for 5 min. Thus, microwave annealing can result in not only efficient activation and abrupt profile in epitaxial silicon but also thermal stability. In comparison, conventional rapid thermal annealing can generate a junction as abrupt as microwave annealing but 25% higher sheet resistance and six times higher instability at 700 °C.

Funder

Ministry of Science and Technology, Taiwan

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference50 articles.

1. See https://irds.ieee.org for “ IEEE International Roadmap for Devices and Systems” (2020).

2. J. O. Borland , in Extended Abstracts of the 3rd International Workshop Junction Technology (IWJT) ( IEEE, 2002), p. 85.

3. S. D. Suk , S.Y. Lee , S.M. Kim , E.J. Yoon , M.S. Kim , M. Li , C. W. Oh , K. H. Yeo , S. H. Kim , D.S. Shin , K.H. Lee , H. S. Park , J. N. Han , C. J. Park , J.B. Park , D.W. Kim , D. Park , and B.I. Ryu , in IEEE International Electron Devices Meeting (IEDM) ( IEEE, 2005), p. 717.

4. S.Y. Lee , E.J. Yoon , S.M. Kim , C. W. Oh , M. Li , J.D. Choi , K.H. Yeo , M.S. Kim , H.J. Cho , S.H. Kim , D.W. Kim , D. Park , and K. Kim , in Symposium of VLSI Technology ( IEEE, 2004), p. 200.

5. Conformal Doping of FINFETs: a Fabrication and Metrology Challenge

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3