Revealing spatiotemporal interaction patterns behind complex cities

Author:

Liu Chenxin1,Yang Yu1,Chen Bingsheng12ORCID,Cui Tianyu1,Shang Fan1ORCID,Fan Jingfang3ORCID,Li Ruiqi1ORCID

Affiliation:

1. UrbanNet Lab, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

2. Centre for Complexity Science, Imperial College London, London SW7 2AZ, United Kingdom

3. School of Systems Science/Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China

Abstract

Cities are typical dynamic complex systems that connect people and facilitate interactions. Revealing general collective patterns behind spatiotemporal interactions between residents is crucial for various urban studies, of which we are still lacking a comprehensive understanding. Massive cellphone data enable us to construct interaction networks based on spatiotemporal co-occurrence of individuals. The rank-size distributions of dynamic population of locations in all unit time windows are stable, although people are almost constantly moving in cities and hot-spots that attract people are changing over time in a day. A larger city is of a stronger heterogeneity as indicated by a larger scaling exponent. After aggregating spatiotemporal interaction networks over consecutive time windows, we reveal a switching behavior of cities between two states. During the “active” state, the whole city is concentrated in fewer larger communities, while in the “inactive” state, people are scattered in smaller communities. Above discoveries are universal over three cities across continents. In addition, a city stays in an active state for a longer time when its population grows larger. Spatiotemporal interaction segregation can be well approximated by residential patterns only in smaller cities. In addition, we propose a temporal-population-weighted-opportunity model by integrating a time-dependent departure probability to make dynamic predictions on human mobility, which can reasonably well explain the observed patterns of spatiotemporal interactions in cities.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3