Dielectric loss due to charged-defect acoustic phonon emission

Author:

Turiansky Mark E.1ORCID,Van de Walle Chris G.1ORCID

Affiliation:

1. Materials Department, University of California , Santa Barbara, California 93106-5050, USA

Abstract

The coherence times of state-of-the-art superconducting qubits are limited by bulk dielectric loss, yet the microscopic mechanism leading to this loss is unclear. Here, we propose that the experimentally observed loss can be attributed to the presence of charged defects that enable the absorption of electromagnetic radiation by the emission of acoustic phonons. Our explicit derivation of the absorption coefficient for this mechanism allows us to derive a loss tangent of 7.2 × 10−9 for Al2O3, in good agreement with recent high-precision measurements [Read et al., Phys. Rev. Appl. 19, 034064 (2023)]. We also find that for temperatures well below ∼0.2 K, the loss should be independent of temperature, which is also in agreement with observations. Our investigations show that the loss per defect depends mainly on properties of the host material, and a high-throughput search suggests that diamond, cubic BN, AlN, and SiC are optimal in this respect.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3