Effect of the deformation temperature and strain on the strain rate sensitivity of fcc medium-entropy alloys

Author:

Mahato Swati1ORCID,Jha Saumya R.1,Sonkusare Reshma2ORCID,Biswas Krishanu1ORCID,Gurao Nilesh P.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Indian Institute of Technology Kanpur 1 , Kanpur 208016, India

2. Institute of Materials and Process Design, Helmholtz Zentrum Hereon 2 , Geesthacht, Germany

Abstract

The primary objective of the present investigation is to elucidate the operative micromechanisms influencing the strain rate sensitivity and activation volume in (FeCrNi)99Si1 and FeMnNi medium-entropy alloys. Room-temperature nanoindentation experiments at different loading rates were performed to study the evolution of the strain rate sensitivity and activation volume in (FeCrNi)99Si1 and FeMnNi medium-entropy alloys. The (FeCrNi)99Si1 samples were subjected to plane strain deformation by rolling at 77 and 300 K to study the effect of temperature on the strain rate sensitivity, while the FeMnNi and (FeCrNi)99Si1 samples were subjected to simple shear deformation by high-pressure torsion at 300 K to examine the effect of strains. Contrary to the well-documented trend observed in fcc metals and alloys, where the strain rate sensitivity typically increases with decreasing grain size, the present study reveals a distinct behavior for the current alloys. Similarly, these alloys are characterized by extremely low activation volumes of a few tens of b3 compared to 100–1000 b3 for conventional fcc metals and alloys in the microcrystalline grain size regime. Unlike conventional fcc metals and alloys, there is an insignificant change in the activation volume of the current high-/medium-entropy alloy (H/MEA) with decreasing grain size from the microcrystalline to nanocrystalline regime. The unique evolution of strain rate sensitivity and activation volume in H/MEAs is explained in terms of the evolution of distinct dislocation structures as well as synergistic operation of additional mechanisms such as twinning, phase transformation from fcc to hcp phases, cluster strengthening, and short-range ordering due to the aperiodic energy landscape existing in MEAs.

Funder

Science and Engineering Research Board

Indian Space Research Organisation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3