In-plasma analysis of plasma–surface interactions

Author:

Vinchon P.1ORCID,Asadollahi S.2ORCID,Coté C.2ORCID,Marcet S.3ORCID,Atallah S.1,Dessureault E.1,Chicoine M.1ORCID,Sarkissian A.2ORCID,Leonelli R.1ORCID,Roorda S.1ORCID,Schiettekatte F.1ORCID,Stafford L.1ORCID

Affiliation:

1. Université de Montréal 1 , Montréal, Québec H3C 3J7, Canada

2. Plasmionique Inc. 2 , Varennes, Québec J3X 1S2, Canada

3. Photon etc. 3 , Montréal, Québec H2S 2X3, Canada

Abstract

During deposition, modification, and etching of thin films and nanomaterials in reactive plasmas, many active species can interact with the sample simultaneously. This includes reactive neutrals formed by fragmentation of the feed gas, positive ions, and electrons generated by electron-impact ionization of the feed gas and fragments, excited states (in particular, long-lived metastable species), and photons produced by spontaneous de-excitation of excited atoms and molecules. Notably, some of these species can be transiently present during the different phases of plasma processing, such as etching of thin layer deposition. To monitor plasma–surface interactions during materials processing, a new system combining beams of neutral atoms, positive ions, UV photons, and a magnetron plasma source has been developed. This system is equipped with a unique ensemble of in-plasma surface characterization tools, including (1) a Rutherford Backscattering Spectrometer (RBS), (2) an Elastic Recoil Detector (ERD), and (3) a Raman spectroscopy system. RBS and ERD analyses are carried out using a differentially pumped 1.7 MV ion beam line Tandetron accelerator generating a beam at grazing incidence. The ERD system is equipped with an absorber and is specifically used to detect H initially bonded to the surface; higher resolution of surface H is also available through nuclear reaction analysis. In parallel, an optical port facing the substrate is used to perform Raman spectroscopy analysis of the samples during plasma processing. This system enables fast monitoring of a few Raman peaks over nine points scattered on a 1.6 × 1.6 mm2 surface without interference from the inherent light emitted by the plasma. Coupled to the various plasma and beam sources, the unique set of in-plasma surface characterization tools detailed in this study can provide unique time-resolved information on the modification induced by plasma. By using the ion beam analysis capability, the atomic concentrations of various elements in the near-surface (e.g., stoichiometry and impurity content) can be monitored in real-time during plasma deposition or etching. On the other hand, the evolution of Raman peaks as a function of plasma processing time can contribute to a better understanding of the role of low-energy ions in defect generation in irradiation-sensitive materials, such as monolayer graphene.

Funder

Canada Foundation for Innovation

Natural Sciences and Engineering Research Council of Canada

Fonds de recherche du Québec – Nature et technologies

Universite de Montreal

PRIMA-Quebec

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Plasma ion beam analysis of polymer layer and adsorbed H monolayer etching;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2024-09

2. Operando XPS for Plasma Process Monitoring: A Case Study on the Hydrogenation of Copper Oxide Confined under h-BN;The Journal of Physical Chemistry C;2024-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3