First step toward a parameter-free, nonlocal kinetic energy density functional for semiconductors and simple metals

Author:

Bhattacharjee Abhishek1ORCID,Jana Subrata2ORCID,Samal Prasanjit1ORCID

Affiliation:

1. School of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute 1 , Jatni 752050, India

2. Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science 2 , Rehovoth 76100, Israel

Abstract

The accuracy of orbital-free density functional theory depends on the approximations made for a Kinetic Energy (KE) functional. Until now, the most accurate KEDFs are based on non-local kernels constructed from the linear response theory of homogeneous electron gas. In this work, we explore beyond the HEG by employing a more general kernel based on the jellium-with-gap model (JGM). The proposed functional incorporates several new features, such as (i) having the correct low momentum(q) limit of the response function for metals and semiconductors without any modeling term, (ii) the underlying kernel is density-independent, and most importantly, (iii) parameter-free. The accuracy and efficiency of the proposed JGM NL-KEDF have been demonstrated for several semiconductors and metals. The encouraging results indicate the utility and predictive power of the JGM kernel for NL KEDF developments. This approach is also physically appealing and practically useful as we have presented a general formalism to incorporate the gap kernel in all existing Lindhard-based functionals.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3