Finding influential edges in multilayer networks: Perspective from multilayer diffusion model

Author:

Lin Wei1ORCID,Xu Li1ORCID,Fang He2ORCID

Affiliation:

1. College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, Fujian, China

2. School of Electronic and Information Engineering, Soochow University, Soochow 215301, Jiangsu, China

Abstract

With the popularization of social network analysis, information diffusion models have a wide range of applications, such as viral marketing, publishing predictions, and social recommendations. The emergence of multiplex social networks has greatly enriched our daily life; meanwhile, identifying influential edges remains a significant challenge. The key problem lies that the edges of the same nodes are heterogeneous at different layers of the network. To solve this problem, we first develop a general information diffusion model based on the adjacency tensor for the multiplex network and show that the [Formula: see text]-mode singular value can control the level of information diffusion. Then, to explain the suppression of information diffusion through edge deletion, efficient edge eigenvector centrality is proposed to identify the influence of heterogeneous edges. The numerical results from synthetic networks and real-world multiplex networks show that the proposed strategy outperforms some existing edge centrality measures. We devise an experimental strategy to demonstrate that influential heterogeneous edges can be successfully identified by considering the network layer centrality, and the deletion of top edges can significantly reduce the diffusion range of information across multiplex networks.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3