NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions

Author:

Ferro Marc D.1ORCID,Proctor Christopher M.2,Gonzalez Alexander3ORCID,Jayabal Sriram3ORCID,Zhao Eric1ORCID,Gagnon Maxwell3ORCID,Slézia Andrea4ORCID,Pas Jolien5ORCID,Dijk Gerwin5ORCID,Donahue Mary J.6,Williamson Adam78ORCID,Raymond Jennifer3ORCID,Malliaras George G.2ORCID,Giocomo Lisa3ORCID,Melosh Nicholas A.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Stanford University 1 , Stanford, California 94305, USA

2. Electrical Engineering Division, Department of Engineering, University of Cambridge 2 , Cambridge CB3 0FA, United Kingdom

3. Department of Neurobiology, Stanford University School of Medicine 3 , Stanford, California 94304, USA

4. 4 Multimodal Neurotechnology Group, Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Magyar tudósok körútja 2., Hungary

5. Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE 5 , 13541 Gardanne, France

6. 6 Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60221, Sweden

7. 7 International Clinical Research Center, ICRC, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic

8. 8 Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden

Abstract

Scalable electronic brain implants with long-term stability and low biological perturbation are crucial technologies for high-quality brain–machine interfaces that can seamlessly access delicate and hard-to-reach regions of the brain. Here, we created “NeuroRoots,” a biomimetic multi-channel implant with similar dimensions (7 μm wide and 1.5 μm thick), mechanical compliance, and spatial distribution as axons in the brain. Unlike planar shank implants, these devices consist of a number of individual electrode “roots,” each tendril independent from the other. A simple microscale delivery approach based on commercially available apparatus minimally perturbs existing neural architectures during surgery. NeuroRoots enables high density single unit recording from the cerebellum in vitro and in vivo. NeuroRoots also reliably recorded action potentials in various brain regions for at least 7 weeks during behavioral experiments in freely-moving rats, without adjustment of electrode position. This minimally invasive axon-like implant design is an important step toward improving the integration and stability of brain–machine interfacing.

Funder

National Institute of Neurological Disorders and Stroke

National Science Foundation

Horizon 2020 Framework Program

James S. McDonnell Foundation

Simons Foundation

National Institutes of Health

European Research Council

Ministry of Human Capacities, Hungary

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3