Phase diagrams and polarization reversal in nanosized HfxZr1−xO2−y

Author:

Eliseev Eugene A.1ORCID,Zagorodniy Yuri O.1ORCID,Pavlikov Victor N.1,Leshchenko Oksana V.1ORCID,Shevliakova Hanna V.2ORCID,Karpets Miroslav V.1,Yaremkevych Andrei D.3,Fesenko Olena M.3,Kalinin Sergei V.4ORCID,Morozovska Anna N.3ORCID

Affiliation:

1. Frantsevich Institute for Problems in Materials Science, National Academy of Sciences of Ukraine 1 , Omeliana Pritsaka str., 3, Kyiv 03142, Ukraine

2. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” 2 pr. Beresteiskyi 37, 03056 Kyiv, Ukraine

3. Institute of Physics, National Academy of Sciences of Ukraine 3 , pr. Nauky 46, 03028 Kyiv, Ukraine

4. Department of Materials Science and Engineering, University of Tennessee 4 , Knoxville, Tennessee 37996, USA

Abstract

To describe the polar properties of nanosized HfxZr1−xO2−y, we evolve the “effective” Landau–Ginzburg–Devonshire (LGD) model based on the parametrization of the Landau expansion coefficients for polar and antipolar orderings. We have shown that the effective LGD model can predict the influence of screening conditions and size effects on phase diagrams, polarization reversal, and structural properties of nanosized HfxZr1−xO2−y of various shapes and sizes. To verify the model, we use the available experimental results for HfxZr1−xO2 thin films and oxygen-deficient HfO2−y nanoparticles prepared under different annealing conditions. X-ray diffraction, which was used to determine the phase composition of the HfO2−y nanoparticles, revealed the formation of a ferroelectric orthorhombic phase in them. Micro-Raman spectroscopy was used to explore the correlation of lattice dynamics and structural changes that depend on the oxygen vacancy concentration in the HfO2−y nanoparticles. Since our approach allows us to determine the conditions (shape, sizes, Zr content, and/or oxygen vacancy amount) for which nanosized HfxZr1−xO2−y are ferroelectric or antiferroelectric, we hope that the obtained results are useful for creation of next generation Si-compatible ferroelectric gate oxide nanomaterials.

Funder

U.S. Department of Energy

Ministry of Science and Education of Ukraine

National Academy of Sciences of Ukraine

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3