Numerical simulation of dynamic stall flow control using a multi-dielectric barrier discharge plasma actuation strategy

Author:

Xu Zeyang1ORCID,Wu Bin1ORCID,Gao Chao1,Wang Na2

Affiliation:

1. Northwestern Polytechnical University, Xi'an 710072, People's Republic of China

2. Xi'an Aeronautical Institute, Xi'an 710072, People's Republic of China

Abstract

To alleviate the deterioration in wind turbine performance caused by dynamic stall, the flow control of a pitching NACA0012 airfoil is investigated through numerical simulation of an alternating current dielectric barrier discharge (AC-DBD) plasma actuator at a Reynolds number Re = 135 000. To avoid the harmonic oscillations of aerodynamic force caused by unsteady DBD actuation, this work focuses on improving the control potential for steady actuation. The control mechanisms of actuators at various positions are investigated using five groups of actuators mounted at 0%, 3%, 10%, 45%, and 80% chord lengths c above the upper surface of an airfoil. The actuator at 80% c performs more efficiently in terms of lift enhancement in the initial upstroke and the final downstroke. The actuator at 0% c suppresses the growth of the leading-edge vortex and maintains the suction of the dynamic stall vortex (DSV). After the shedding of the DSV, it suppresses the secondary separation to delay the onset of dynamic stall. At the flow reattachment stage, the actuators at 3% c and 10% c accelerate the boundary layer reattachment by momentum injection. From these results, a multi-DBD control strategy is proposed. The scheme selects the optimal actuator in operation at a certain stage of dynamic stall and takes advantage of actuators at different positions to enhance the average and maximum aerodynamic force, delay the onset of dynamic stall, accelerate flow reattachment, and avoid excessive energy consumption.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3