Role of mixing thermodynamic properties on the Soret effect

Author:

Kiyosawa Tomohiro1,Shimizu Masahiro1ORCID,Matsuoka Jun2,Nakashima Kento1,Sato Kenzo1,Nishi Masayuki3,Shimotsuma Yasuhiko1ORCID,Miura Kiyotaka1

Affiliation:

1. Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

2. School of Engineering, The University of Shiga Prefecture, Hikone 522-8533, Japan

3. Department of Mechanical and Electrical System Engineering, Faculty of Engineering, Kyoto University of Advanced Science, Kyoto 615-8577, Japan

Abstract

We demonstrate that the modified Kempers model, a recently developed theoretical model for the Soret effect in oxide melts, is applicable for predicting the composition dependence of the Soret coefficient in three binary molecular liquids with negative enthalpies of mixing. We compared the theoretical and experimental values for water/ethanol, water/methanol, water/ethylene glycol, water/acetone, and benzene/ n-heptane mixtures. In water/ethanol, water/methanol, and water/ethylene glycol, which have negative enthalpies of mixing across the entire mole fraction range, the modified Kempers model successfully predicts the sign change of the Soret coefficient with high accuracy, whereas, in water/acetone and benzene/ n-heptane, which have composition ranges with positive enthalpies of mixing, it cannot predict the sign change of the Soret coefficient. These results suggest that the model is applicable in composition ranges with negative enthalpies of mixing and provides a framework for predicting and understanding the Soret effect from the equilibrium thermodynamic properties of mixing, such as the partial molar volume, partial molar enthalpy of mixing, and chemical potential.

Funder

Japan Society for the Promotion of Science London

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3