Affiliation:
1. Department of Physics, Technion—Israel Institute of Technology , Haifa 3200003, Israel
Abstract
We present results exploring various methods of aluminum flyer acceleration. One method uses the shock wave generated by underwater electrical explosions of thin foils supplied by a pulse generator with stored energy of ∼4.7 kJ. Utilizing the shock created by an exploding foil, a maximal free flyer velocity of ∼2000 m/s is obtained. This acceleration method is compared to results exploiting only magnetic pushing to accelerate flyers using a common strip-line configuration, resulting in much lower velocities of ∼300 m/s. We also present a modified strip-line configuration, for which a significant increase in the flyer velocity to ∼1200 m/s is measured. Finally, a hybrid strip configuration, incorporating both the effects of magnetic pushing and acceleration by exploding foil and its subsequent shock wave, results in ∼1400 m/s flyer velocity. These experimental results are analyzed by numerical simulations and analytical modeling of the conservation equations of mass and momentum.
Funder
Israel Science Foundation
Subject
General Physics and Astronomy