Non-Hermitian higher-order topological corner states on the extended kagome lattice

Author:

Zhang Yiqun1,Su Zhaoxian1ORCID,Wang Yongtian1ORCID,Huang Lingling1ORCID

Affiliation:

1. Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology , Beijing 100081, China and MOE Key Laboratory of Optoelectronic Imaging Technology and Systems, Beijing Institute of Technology, Beijing 100081, China

Abstract

Exploring the interaction between topological phases and non-Hermitian potentials such as gain and loss can benefit designing robust optical devices. Recent studies have revealed topological phases can be simply from gain and loss in non-Hermitian systems. Here, we propose an extended kagome lattice model, where the non-Hermitian potentials drive the system from a trivial phase to a higher-order topological phase. Higher-order topological insulators exhibit lower-dimensional boundary states on corners or hinges. We construct two-dimensional higher-order topological insulators on different arrays of the extended kagome lattice model. Topologically protected states emerge at the corner with a 1/3 fractional charge at each corner as the strength of the gain and loss increases. The topologically protected corner states are characterized by the quantized polarization as the topological index. We find that non-Hermitian potentials provide an extra degree of freedom to switch on and off the higher-order topological corner states. The proposed system can be verified through many experimental platforms, including coupled optical resonating cavities and waveguides. Our work indicates the great prospects for constructing integrated photonics platforms and designing actively reconfigurable photonic devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundaion of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3