Study the optical properties of Cs3CeI6: First-principles calculations

Author:

Xie Wei1ORCID,Hu Fuyun1,Gong Sha1,Peng Liping1ORCID

Affiliation:

1. School of Physics and Telecommunications, Huanggang Normal University , Huangzhou 438000, People’s Republic of China

Abstract

The band structure, density of states, and optical properties of a novel material, Cs3CeI6 are calculated for the first time using the density functional theory method in first-principles calculations. It is found that Cs3CeI6 possesses a direct bandgap with an energy value of 3.05 eV. Examination of the density of states indicates that the conduction band minimum is primarily composed of Ce-5d and Ce-4f orbitals, while the valence band maximum is mainly contributed by Ce-4f orbitals. Photoluminescence (P.L.) spectroscopy reveals distinctive bimodal emission peaks at 432 and 468 nm, which serve as characteristic signatures of Ce3+ ions. This bimodal emission arises from spontaneous radiative transitions between excited 5d orbitals and the 2F7/2 and 2F5/2 states within the 4f orbital, as confirmed by crystal field calculations. The difference between these two emission peaks corresponds to variations in energy levels associated with Ce3+ ions due to crystal field disturbances. Moreover, Cs3CeI6 exhibits an exciton binding energy of 225 meV due to strong localization effects in Ce-4f orbitals and binding properties inherent in its zero-dimensional structure, promoting exciton formation. Such a substantial exciton binding energy offers significant advantages for potential electroluminescence applications. Based on these findings, we anticipate promising prospects for the use of Cs3CeI6 in electroluminescent devices.

Funder

Central Government of Hubei Province Guides Local Projects

Hubei Education Department Innovation Team

Hubei Provincial Department of Education

Huanggang Science and Technolgy Project

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3