Study on neutronics modeling with 22.5° model using ANSYS for CFETR

Author:

Li Jie1ORCID,Li Hang1ORCID,Wu Muquan1ORCID,Zhu Xiang1ORCID,Yan Peiguang1ORCID,Lin Xiaodong1,Gao Xiang12ORCID

Affiliation:

1. College of Physics and Optoelectronic Engineering, Shenzhen University 1 , Shenzhen 518060, China

2. Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences 2 , Hefei 230031, China

Abstract

The detailed China Fusion Engineering Test Reactor (CFETR) 22.5° computer aided design (CAD) model is very difficult to convert into Monte Carlo N Particle Transport Code (MCNP). Manually writing MCNP input data is complicated, which is not only time-consuming but also cannot guarantee accuracy. Therefore, in order to improve the efficiency and accuracy of model transformation, modeling with CAD using CATIA is introduced, and MCNP files are converted by ANSYS. This is because ANSYS has a function that converts CAD “stp” format to MCNP input in the geometry section. Meanwhile, ANSYS can also reverse the converted MCNP input file to inspect which module has the problem. Compared with the software platform that can automatically cut, although the CATIA-to-ANSYS method is inferior in terms of automatic operation, it has advantages in accuracy and quickly dealing with error modules. Moreover, it can also perform parametric modeling in CATIA, which facilitates the optimization of the blanket structure. In this paper, the detailed CFETR 22.5° model was developed, and then parametric modeling of the blanket based on CATIA was performed. Finally, a detailed neutronics model is obtained by ANSYS transformation and inspection. Some representative models were initially validated by comparing volume changes before and after conversion. Then, the final neutronics model was used to calculate the nuclear analyses, including the neutron wall loading, fast neutron flux, and nuclear heating on the inboard side. The results show that the volume of the transformed model is basically consistent with the original model, and the error of results is small.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China-Guangdong Joint Fund

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3