Performance investigation of supercapacitors with polyethylene oxide-based gel polymer and ionic liquid electrolytes: Molecular dynamics simulation

Author:

Eyvazi Nasrin1ORCID,Abbaszadeh Davood1ORCID,Biagooi Morad2ORCID,Nedaaee Oskoee SeyedEhsan13ORCID

Affiliation:

1. Department of Physics, Institute for Advanced Studies in Basic Sciences 1 , Zanjan 45137–66731, Iran

2. Intelligent Data Aim Ltd (IDA Ltd), Science and Technology Park of Institute for Advanced Studies in Basic Sciences 2 , Zanjan 45137–65697, Iran

3. Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS) 3 , Zanjan 45137–66731, Iran

Abstract

Due to the importance of supercapacitors in electronic storage devices, improving their efficiency is one of the topics that has attracted the attention of many researchers. Choosing the proper electrolyte for supercapacitors is one of the most significant factors affecting supercapacitors’ performance. In the present paper, we compare liquid electrolytes (ionic liquid electrolytes) and solid electrolytes (polymer electrolytes) by molecular dynamics simulation to summarize their pros and cons. We consider polymer electrolytes in linear and network configurations. The results show that although ionic liquid-based supercapacitors have a larger differential capacitance since they have a smaller operation voltage, the energy stored is less than polymer electrolyte-based supercapacitors. Also, our investigations indicate that polymer electrolyte-based supercapacitors have more mechanical stability. Therefore, they can be considered a very suitable alternative to liquid electrolyte-based supercapacitors since they do not have known liquid electrolyte problems and display better performance.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3