Nonadiabatic dynamics with classical trajectories: The problem of an initial coherent superposition of electronic states

Author:

Villaseco Arribas Evaristo12ORCID,Maitra Neepa T.1ORCID,Agostini Federica2ORCID

Affiliation:

1. Department of Physics, Rutgers University 1 , Newark, New Jersey 07102, USA

2. Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000 2 , 91405 Orsay, France

Abstract

Advances in coherent light sources and development of pump–probe techniques in recent decades have opened the way to study electronic motion in its natural time scale. When an ultrashort laser pulse interacts with a molecular target, a coherent superposition of electronic states is created and the triggered electron dynamics is coupled to the nuclear motion. A natural and computationally efficient choice to simulate this correlated dynamics is a trajectory-based method where the quantum-mechanical electronic evolution is coupled to a classical-like nuclear dynamics. These methods must approximate the initial correlated electron–nuclear state by associating an initial electronic wavefunction to each classical trajectory in the ensemble. Different possibilities exist that reproduce the initial populations of the exact molecular wavefunction when represented in a basis. We show that different choices yield different dynamics and explore the effect of this choice in Ehrenfest, surface hopping, and exact-factorization-based coupled-trajectory schemes in a one-dimensional two-electronic-state model system that can be solved numerically exactly. This work aims to clarify the problems that standard trajectory-based techniques might have when a coherent superposition of electronic states is created to initialize the dynamics, to discuss what properties and observables are affected by different choices of electronic initial conditions and to point out the importance of quantum-momentum-induced electronic transitions in coupled-trajectory schemes.

Funder

Agence Nationale de la Recherche

National Science Foundation

U.S. Department of Energy

Office for Science and Technology of the Embassy of France in the United States

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3