Predicting complex multicomponent particle–liquid flow in a mechanically agitated vessel via machine learning

Author:

Li KunORCID,Savari Chiya1ORCID,Barigou Mostafa1ORCID

Affiliation:

1. School of Chemical Engineering, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom

Abstract

Machine learning (ML) is used to build a new computationally efficient data-driven dynamical model for single-phase and complex multicomponent particle–liquid turbulent flows in a stirred vessel. By feeding short-term trajectories of flow phases or components acquired experimentally for a given flow condition via a positron emission particle tracking (PEPT) technique, the ML model learns primary flow dynamics from the input driver data and predicts new long-term trajectories pertaining to new flow conditions. The model performance is evaluated over a wide range of flow conditions by comparing ML-predicted flow fields with extensive long-term experimental PEPT data. The ML model predicts the local velocities and spatial distribution of each flow phase and component to a high degree of accuracy, including conditions of impeller speeds, particle loadings and sizes within and without the range of the input driver datasets. A new flow analysis and modeling strategy is thus developed, whereby only short-term experiments (or alternatively high-fidelity simulations) covering a few typical flow situations are sufficient to enable the prediction of complex multiphase flows, significantly reducing experimental and/or simulation costs.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3