The Maxwell-scalar field system near spatial infinity

Author:

Minucci Marica1ORCID,Macedo Rodrigo Panosso2ORCID,Valiente Kroon Juan A.1ORCID

Affiliation:

1. School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom

2. School of Mathematical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

Abstract

We make use of Friedrich’s representation of spatial infinity to study asymptotic expansions of the Maxwell-scalar field system near spatial infinity. The main objective of this analysis is to understand the effects of non-linearities of this system on the regularity of solutions and polyhomogeneous expansions at null infinity and, in particular, at the critical sets where null infinity touches spatial infinity. The main outcome from our analysis is that the nonlinear interaction makes both fields more singular at the conformal boundary than what is seen when the fields are non-interacting. In particular, we find a whole new class of logarithmic terms in the asymptotic expansions, which depend on the coupling constant between the Maxwell and scalar fields. We analyze the implications of these results on the peeling (or rather lack thereof) of the fields at null infinity.

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polyhomogeneous spin-0 fields in Minkowski space–time;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-01-15

2. Asymptotic Symmetry Algebra of Einstein Gravity and Lorentz Generators;Physical Review Letters;2023-09-14

3. Spin-0 fields and the NP-constants close to spatial infinity in Minkowski spacetime;Journal of Mathematical Physics;2023-08-01

4. Linearised conformal Einstein field equations;Classical and Quantum Gravity;2023-07-25

5. The characteristic initial value problem for the conformally invariant wave equation on a Schwarzschild background;Classical and Quantum Gravity;2023-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3