The many-body expansion for metals. I. The alkaline earth metals Be, Mg, and Ca

Author:

Mato Joani1ORCID,Tzeli Demeter23ORCID,Xantheas Sotiris S.45ORCID

Affiliation:

1. Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, USA

2. Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15784, Greece

3. Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece

4. Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, USA

5. Department of Chemistry, University of Washington, Seattle, Washington 98195, USA

Abstract

We examine the many-body expansion (MBE) for alkaline earth metal clusters, Be n, Mg n, Ca n ( n = 4, 5, 6), at the Møller–Plesset second order perturbation theory, coupled-cluster singles and doubles with perturbative triples, multi-reference perturbation theory, and multi-reference configuration interaction levels of theory. The magnitude of each term in the MBE is evaluated for several geometrical configurations. We find that the behavior of the MBE for these clusters depends strongly on the geometrical arrangement and, to a lesser extent, on the level of theory used. Another factor that affects the MBE is the in situ (ground or excited) electronic state of the individual atoms in the cluster. For most geometries, the three-body term is the largest, followed by a steady decrease in absolute energy for subsequent terms. Though these systems exhibit non-negligible multi-reference effects, there was little qualitative difference in the MBE when employing single vs multi-reference methods. Useful insights into the connectivity and stability of these clusters have been drawn from the respective potential energy surfaces and quasi-atomic orbitals for the various dimers, trimers, and tetramers. Through these analyses, we investigate the similarities and differences in the binding energies of different-sized clusters for these metals.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3