Magnetohydrodynamic convection in a heat-generating ferrofluid within a corrugated cavity containing a rotating cylinder

Author:

Hasan NahidORCID,Saha SumonORCID,Umavathi J. C.ORCID

Abstract

This study introduces a novel approach by combining magnetohydrodynamic flow with Joule heating effects to investigate the conjugate mixed convective flow of ferrofluid in a non-homogenously warmed wavy-walled squared-shaped chamber with a spinning cylindrical object positioned at the center of the chamber. The current study seeks to maximize heat transmission effectiveness by scrutinizing optimum system attributes and conducting entropy production analysis. Numerical solutions are achieved by employing the Galerkin finite element weighted residual approach to solve the two-dimensional Navier–Stokes and heat energy equations representing the mathematical model. The parametric alterations encompass Grashof (103 ≤ Gr ≤ 106), Reynolds (31.62 ≤ Re ≤ 1000), and Hartmann (5.623 ≤ Ha ≤ 31.623) numbers, volumetric heat generation coefficient (0 ≤ Δ ≤ 10), thermal conductivity ratio (K = 20.07, 95.14), corrugation frequency (6.5 ≤ f ≤ 8.5), dimensionless corrugation amplitude (0.02 ≤ A ≤ 0.04), and dimensionless cylinder diameter (0.3 ≤ D ≤ 0.5). The study assesses the thermal characteristics of a heat source and the entropy generated within the computational domain while considering varying corrugation frequency and amplitude, cylinder diameter, thermal conductivity, strength of magnetism, and heat generation. The findings are quantitatively showcased through the Nusselt number of the hot wall, mean fluid temperature, overall entropy production, and thermal performance criterion (TPC) across the domain. After extensive analysis, it is evident that minimum cylinder diameter (= 0.3), corrugation frequency (= 6.5), and amplitude (= 0.02) while the maximum thermal conductivity ratio (= 95.14) ensure optimal system performance. Surprisingly, incorporating interior heat production diminishes thermal performance significantly while increasing TPC. Understanding the impacts of the magnetic field, Joule heating, and interior heat production on convective flow offers key perceptions into temperature variation, heat transport, velocity profile, and irreversible energy loss in numerous engineering applications.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3