Computational experiments with cellular-automata generated images reveal intrinsic limitations of convolutional neural networks on pattern recognition tasks

Author:

Lei Weihua1ORCID,Zanchettin Cleber23ORCID,Santos Flávio A. O.3ORCID,Nunes Amaral Luís A.124ORCID

Affiliation:

1. Department of Physics and Astronomy, Northwestern University 1 , Evanston, Illinois 60208, USA

2. Department of Chemical and Biological Engineering, Northwestern University 2 , Evanston, Illinois 60208, USA

3. Centro de Informática, Universidade Federal de Pernambuco 3 , Recife, Pernambuco 52061080, Brazil

4. Northwestern Institute on Complex Systems (NICO), Northwestern University 4 , Evanston, Illinois 60208, USA

Abstract

The extraordinary success of convolutional neural networks (CNNs) in various computer vision tasks has revitalized the field of artificial intelligence. The out-sized expectations created by this extraordinary success have, however, been tempered by a recognition of CNNs’ fragility. Importantly, the magnitude of the problem is unclear due to a lack of rigorous benchmark datasets. Here, we propose a solution to the benchmarking problem that reveals the extent of the vulnerabilities of CNNs and of the methods used to provide interpretability to their predictions. We employ cellular automata (CA) to generate images with rigorously controllable characteristics. CA allow for the definition of both extraordinarily simple and highly complex discrete functions and allow for the generation of boundless datasets of images without repeats. In this work, we systematically investigate the fragility and interpretability of the three popular CNN architectures using CA-generated datasets. We find a sharp transition from a learnable phase to an unlearnable phase as the latent space entropy of the discrete CA functions increases. Furthermore, we demonstrate that shortcut learning is an inherent trait of CNNs. Given a dataset with an easy-to-learn and strongly predictive pattern, CNN will consistently learn the shortcut even if the pattern occurs only on a small fraction of the image. Finally, we show that widely used attribution methods aiming to add interpretability to CNN outputs are strongly CNN-architecture specific and vary widely in their ability to identify input regions of high importance to the model. Our results provide significant insight into the limitations of both CNNs and the approaches developed to add interpretability to their predictions and raise concerns about the types of tasks that should be entrusted to them.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3