Temperature-controlled focusing of Brownian particles in a channel

Author:

Nie Deming1ORCID,Lin Jianzhong2ORCID

Affiliation:

1. Institute of Fluid Mechanics, China Jiliang University, Hangzhou 310018, China

2. Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo 315201, China

Abstract

The preferential motion of Brownian particles in a channel with heated or cooled walls was numerically simulated using a direct numerical simulation method, that is, the fluctuating-lattice Boltzmann method. The resulting focusing of Brownian particles on the channel centerline induced by heated walls is the focus of this study. The effects of wall temperature, fluid thermal diffusivity, and particle size and density were considered in terms of both the focusing efficiency and performance of Brownian particles. It was revealed that the particle focusing process follows a quadratic relationship with time at high wall temperatures or a linear relationship at low wall temperatures. For a fixed wall temperature, the focusing efficiency (i.e., how fast the Brownian particles aggregate) is dominated by the Prandtl number, that is, the relative importance of the heat transfer and momentum transfer in the fluid. Meanwhile, the Lewis number, that is, the ratio of the fluid thermal diffusivity to the particle self-diffusivity, controls the focusing performance (i.e., to what extent Brownian particles aggregate). The possible mechanisms behind this are discussed. Finally, the negligible influence of particle density on both the focusing efficiency and performance was revealed.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluids meet solids;The Journal of Chemical Physics;2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3