BeM(CO)3− (M = Co, Rh, Ir) and BeM(CO)3 (M = Ni, Pd, Pt): Triply bonded terminal beryllium in zero oxidation state

Author:

Liu Yu-qian1ORCID,Kalita Amlan J.2ORCID,Zhang Hui-yu1ORCID,Cui Li-juan1ORCID,Yan Bing1,Guha Ankur K.3ORCID,Cui Zhong-hua14ORCID,Pan Sudip1ORCID

Affiliation:

1. Institute of Atomic and Molecular Physics, Jilin University 1 , Changchun 130023, China

2. Department of Chemistry, University of Science & Technology 2 , Meghalaya, Ri-Bhoi, Meghalaya 793101, India

3. Advanced Computational Chemistry Centre, Department of Chemistry, Cotton University 3 , Panbazar, Guwahati, Assam 781001, India

4. Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University 4 , Changchun 130023, China

Abstract

We perform detailed potential energy surface explorations of BeM(CO)3− (M = Co, Rh, Ir) and BeM(CO)3 (M = Ni, Pd, Pt) using both single-reference and multireference-based methods. The present results at the CASPT2(12,12)/def2-QZVPD//M06-D3/def2-TZVPPD level reveal that the global minimum of BeM(CO)3− (M = Co, Rh, Ir) and BePt(CO)3 is a C3v symmetric structure with an 1A1 electronic state, where Be is located in a terminal position bonded to M along the center axis. For other cases, the C3v symmetric structure is a low-lying local minimum. Although the present complexes are isoelectronic with the recently reported BFe(CO)3− complex having a B–Fe quadruple bond, radial orbital-energy slope (ROS) analysis reveals that the highest occupied molecular orbital (HOMO) in the title complexes is slightly antibonding in nature, which bars a quadruple bonding assignment. Similar weak antibonding nature of HOMO in the previously reported BeM(CO)4 (M = Ru, Os) complexes is also noted in ROS analysis. The bonding analysis through energy decomposition analysis in combination with the natural orbital for chemical valence shows that the bonding between Be and M(CO)3q (q = −1 for M = Co, Rh, Ir and q = 0 for M = Ni, Pd, Pt) can be best described as Be in the ground state (1S) interacting with M(CO)30/− via dative bonds. The Be(spσ) → M(CO)3q σ-donation and the complementary Be(spσ) ← M(CO)3q σ-back donation make the overall σ bond, which is accompanied by two weak Be(pπ) ← M(CO)3q π-bonds. These complexes represent triply bonded terminal beryllium in an unusual zero oxidation state.

Funder

National Natural Science Foundation of China-China Academy of General Technology Joint Fund for Basic Research

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3