Experimental investigation on the synchronization characteristics of a pitch-plunge aeroelastic system exhibiting stall flutter

Author:

Tripathi Dheeraj1ORCID,Shreenivas R.1,Bose Chandan2ORCID,Mondal Sirshendu3ORCID,Venkatramani J.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Shiv Nadar University, 203207 Greater Noida, India

2. School of Engineering, Institute for Energy Systems, University of Edinburgh, Edinburgh EH9 3FB, United Kingdom

3. Department of Mechanical Engineering, NIT Durgapur, Durgapur 713209, India

Abstract

This study focuses on characterizing the bifurcation scenario and the underlying synchrony behavior in a nonlinear aeroelastic system under deterministic as well as stochastic inflow conditions. Wind tunnel experiments are carried out for a canonical pitch-plunge aeroelastic system subjected to dynamic stall conditions. The system is observed to undergo a subcritical Hopf bifurcation, giving way to large-amplitude limit cycle oscillations (LCOs) in the stall flutter regime under the deterministic flow conditions. At this condition, we observe intermittent phase synchronization between pitch and plunge modes near the fold point, whereas synchronization via phase trapping is observed near the Hopf point. Repeating the experiments under stochastic inflow conditions, we observe two different aeroelastic responses: low amplitude noise-induced random oscillations (NIROs) and high-amplitude random LCOs (RLCOs) during stall flutter. The present study shows asynchrony between pitch and plunge modes in the NIRO regime. At the onset of RLCOs, asynchrony persists even though the relative phase distribution changes. With further increase in the flow velocity, we observe intermittent phase synchronization in the flutter regime. To the best of the authors’ knowledge, this is the first study reporting the experimental evidence of phase synchronization between pitch and plunge modes of an aeroelastic system, which is of great interest to the nonlinear dynamics community. Furthermore, given the ubiquitous presence of stall behavior and stochasticity in a variety of engineering systems, such as wind turbine blades, helicopter blades, and unmanned aerial vehicles, the present findings will be directly beneficial for the efficient design of futuristic aeroelastic systems.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3