Nanoscale thermal imaging of hot electrons by cryogenic terahertz scanning noise microscopy

Author:

Weng Qianchun12ORCID,Deng Weijie34ORCID,Komiyama Susumu15ORCID,Sasaki Toru6,Imada Hiroshi1ORCID,Lu Wei34,Hosako Iwao5,Kim Yousoo1ORCID

Affiliation:

1. Surface and Interface Science Laboratory, RIKEN 1 , Wako, Saitama 351-0198, Japan

2. PRESTO, Japan Science and Technology Agency (JST) 2 , Kawaguchi, Saitama 332-0012, Japan

3. School of Physical Science and Technology, ShanghaiTech University 3 , Shanghai 201210, China

4. State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, The Chinese Academy of Sciences 4 , Shanghai 200083, China

5. Terahertz Technology Research Center, National Institute of Information and Communications Technology 5 , Nukui-Kitamachi 4-2-1, Koganei, Tokyo 184-8795, Japan

6. UNISOKU Co., Ltd. 6 , Hirakata, Osaka 573-0131, Japan

Abstract

Nanoscale thermal imaging and temperature detection are of fundamental importance in diverse scientific and technological realms. Most nanoscale thermometry techniques focus on probing the temperature of lattice or phonons and are insensitive to nonequilibrium electrons, commonly referred to as “hot electrons.” While terahertz scanning noise microscopy (SNoiM) has been demonstrated to be powerful in the thermal imaging of hot electrons, prior studies have been limited to room temperature. In this work, we report the development of a cryogenic SNoiM (Cryo-SNoiM) tailored for quantitative hot electron temperature detection at low temperatures. The microscope features a special two-chamber design where the sensitive terahertz detector, housed in a vacuum chamber, is efficiently cooled to ∼5 K using a pulse tube cryocooler. In a separate chamber, the atomic force microscope and the sample can be maintained at room temperature under ambient/vacuum conditions or cooled to ∼110 K via liquid nitrogen. This unique dual-chamber cooling system design enhances the efficacy of SNoiM measurements at low temperatures. It not only facilitates the pre-selection of tips at room temperature before cooling but also enables the quantitative derivation of local electron temperature without reliance on any adjustable parameters. The performance of Cryo-SNoiM is demonstrated through imaging the distribution of hot electrons in a cold, self-heated narrow metal wire. This instrumental innovation holds great promise for applications in imaging low-temperature hot electron dynamics and nonequilibrium transport phenomena across various material systems.

Funder

Precursory Research for Embryonic Science and Technology

Japan Society for the Promotion of Science

Kao Foundation for Arts and Sciences

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3