Stochastic fluctuation and transport of tokamak edge plasmas with the resonant magnetic perturbation field

Author:

Choi Minjun J.1ORCID,Kwon Jae-Min1ORCID,Kim Juhyung1ORCID,Rhee Tongnyeol1,Bak Jun-Gyo1ORCID,Shin Giwook1ORCID,Kim Hyun-Seok1ORCID,Jhang Hogun1ORCID,Kim Kimin1ORCID,Yun Gunsu S.2ORCID,Kim Minwoo1ORCID,Kim SangKyeun3,Kaang Helen H.1,Park Jong-Kyu4ORCID,Lee Hyung Ho1ORCID,In Yongkyoon1ORCID,Lee Jaehyun1ORCID,Kim Minho1ORCID,Park Byoung-Ho1,Park Hyeon K.5

Affiliation:

1. Korea Institute of Fusion Energy, Daejeon 34133, Republic of Korea

2. Pohang University of Science and Technology, Pohang, Gyungbuk 37673, Republic of Korea

3. Princeton University, Princeton, New Jersey 08544, USA

4. Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

5. Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

Abstract

We present that a statistical method known as the complexity–entropy analysis is useful to characterize a state of plasma turbulence and flux in the resonant magnetic perturbation (RMP) edge localized mode (ELM) control experiment. The stochastic pedestal top temperature fluctuation in the RMP ELM suppression phase is distinguished from the chaotic fluctuation in the natural ELM-free phase. It is discussed that the stochastic temperature fluctuation can be originated from the narrow layer of the field penetration on the pedestal top. The forced magnetic island can emit the resonant drift wave of comparable sizes (relatively low-k) in the RMP ELM suppression phase, and it can result in the generation of stochastic higher wavenumber fluctuations coupled to tangled fields around the island. The analysis of the ion saturation current measurement around the major outer striking point on the divertor shows that it also becomes more stochastic as the stronger plasma response to the RMP field is expected.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3