Numerical and experimental study on the behavior of vortex rings generated by shock–bubble interaction

Author:

Kitamura K.1ORCID,Yue Z.1,Fujimoto T.1,Asai H.2,Kubota A.2,Myokan M.2,Ichihara D.2ORCID,Sasoh A.2ORCID

Affiliation:

1. Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

2. Department of Aerospace Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603 Aichi, Japan

Abstract

In this study, three-dimensional numerical simulations and experiments of the interaction between a normal shock and bubbles generated by the repetitive energy depositions of a laser pulse in a Mach 1.92 flow was conducted. As a result of the shock–bubble interaction, a vortex ring, caused by a baroclinic effect, was generated. Owing to the self-induced velocity field, the advection velocity of the vortex rings decreased with increasing laser pulse energy. In the experiments, when interactions among the vortex rings became strong, separations in transverse directions between adjacent bubbles were induced. This was reproduced through numerical simulations by imposing an artificial disturbance in the initial positions of the bubbles, i.e., by 5% of the bubble diameter in a transversal direction. The asymmetric behaviors of a row of vortex rings were classified into three patterns based on the ratio of the distance between the vortex rings to the size of the vortex rings ( λ: inverse Strouhal number). In pattern 1, with λ >2.9, there was negligible interference between the vortex rings because the interval of the vortex rings was sufficiently large. In pattern 2, with λ = 0.97–1.2, separation in the vortex-ring rows appeared, and the separation angle increased as λ decreased. In pattern 3, with λ <0.62, the interference intensified, and the vortex rings collapsed, forming a turbulent flow behind the shock wave.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3