Effects of trailing-edge serration shape on airfoil noise reduction with zero incidence angle

Author:

Hu Ya-Sen1ORCID,Zhang Peng-Jun-Yi1ORCID,Wan Zhen-Hua1ORCID,Liu Nan-Sheng1ORCID,Sun De-Jun1,Lu Xi-Yun1ORCID

Affiliation:

1. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

Abstract

When controlling the trailing-edge (TE) interference noise of airfoil, the design of the TE serration shape is still an open issue. To this end, the flow and noise generation for different TE serration shapes are explored by the wall-resolved implicit large-eddy simulation and acoustic analogy. The feather-like serrations are found to achieve the most prominent noise reduction among the four types of curved serrations, especially in the low-frequency range. With the aid of acoustic analogy, the coherence analysis of far-field noise produced by the dipole sources on the airfoil surface is performed. The results show that destructive interference is still the critical mechanism responsible for noise reduction. Considering only the dipole sources, we find that the feather-like serrated TE shape can obtain the best noise reduction performance among all the serrated cases. Furthermore, since flow structures are reorganized near the TE serrations, we investigated the flow noise sources quantitatively in the near field. In these cases, the noise source due to flow structures is suppressed to a greater extent in the feather-like serrated case near the TE serration roots. Consequently, the above findings indicate that the feather-like serration favors suppressing dipole and flow noise sources in the near field, which makes it an efficient configuration for reducing airfoil noise.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference40 articles.

1. A review of the theory of trailing edge noise

2. The Silent Flight of Owls

3. Noise produced by a sawtooth trailing edge

4. M. Gruber , “ Airfoil noise reduction by edge treatments,” Ph.D. thesis ( University of Southampton, 2012).

5. Prediction of noise from serrated trailing edges

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3