A numerical model for the electrical and shock wave characteristics of underwater pulsed spark discharge

Author:

Li Xin1ORCID,Shi Huantong1ORCID,Hu Jinliang1,Wu Jian1ORCID,Li Xingwen1ORCID,Qiu Aici1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University , Xi'an, Shaanxi Province 710049, People's Republic of China

Abstract

Underwater pulsed spark discharge has been widely used in industrial fields as a source of shock waves or acoustic waves, and numerical modeling of the discharge and pressure wave characteristics is necessary to improve the application performance. In this paper, a numerical model is proposed that couples the circuit equation, the mass and energy conservation equations, and a momentum conservation equation based on the Rankine–Hugoniot conditions. A tabulated wide range equation of state and conductivity data of water are used, and various physical processes during the plasma channel expansion are considered, including the energy flow and mass exchange between the channel and the surrounding water due to thermal radiation, evaporation, and condensation. The model self-consistently solves the circuit current and voltage, the plasma channel parameters including composition, temperature, conductivity, pressure, etc., and the pressure profile at a certain distance from the discharge channel. The calculated results show good consistency with the experimental measurements, and three sets of experimental results from other literature are tested to further verify the applicability and effectiveness of the model.

Funder

National Key Research and Development Program of China

Shaanxi Provincial Science and Technology Plan Project

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3