Effect of heterogeneity on interphase heat transfer for gas–solid flow: A particle-resolved direct numerical simulation

Author:

Fu Jianhong1ORCID,Chen Sheng1ORCID,Zhou Xiaochen1

Affiliation:

1. State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Particle-resolved direct numerical simulation (PR-DNS) of flow past a particle cluster is conducted to analyze the influence of heterogeneous particle distribution on the gas–solid heat transfer calculation. Then, the heat transfer rates calculated using Gunn's correlation are systematically compared with the DNS results for virtual computational fluid dynamics-discrete element method (CFD-DEM) grids with different levels of heterogeneity. The results show that, for a grid located at the interface between the dense cluster region and dilute region, Gunn's correlation significantly overestimates the heat transfer rate, especially at small Reynolds numbers. This is caused by the large temperature difference between the dense and dilute regions in the heterogeneous CFD-DEM grid. The value calculated by Gunn's correlation can be up to ten times the DNS result. For a homogeneous grid inside a dense region, the conventional Nusselt correlation fails to capture the rapid increase in the fluid temperature gradient around the near-interface particles when the grid approaches the cluster–fluid interface. Furthermore, even if the size of the CFD-DEM grid is reduced to twice the particle diameter, the heterogeneous particle distribution still leads to a remarkable error in the heat transfer calculation. Finally, modifications to Gunn's correlation are proposed for three typical cross-interface cases, which can well reflect the influence of the heterogeneous distribution of particles and yield a heat transfer rate close to the PR-DNS results. The mean relative deviations of the three fitted correlations are 5.8%, 14.3%, and 22.4%, respectively.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3