Affiliation:
1. Wyant College of Optical Sciences, University of Arizona 1 , Tucson, Arizona 85721, USA
2. Department of Chemical and Materials Engineering, University of Alberta 2 , Edmonton, Alberta T6G 1H9, Canada
Abstract
The photovoltaic signal is an important characteristic of photodetectors, including but not limited to those that are based on p–n or p–i–n photodiodes. In an open-circuit configuration, pulsed excitation of the detector with ultrafast (femto or nanosecond) pulses leads to a photovoltaic signal that decays slowly (micro-second time scale). If the physics in the detector is dominated by the recombination of the photo-excited charge carriers, one expects the signal to decay without changing its sign. However, some experiments using short-pulse excitation have found that photovoltaic signals can undergo a sign change as a function of time following excitation, with positive signals immediately following the excitation, turning to negative signals several microseconds later. Here, we study various physical effects (density, temperature, electrostriction, pressure, photostriction, and bandgap renormalization) and determine their effect on photovoltaic signals. If, following ultrafast excitation, the carrier density and temperature are increased, and during relaxation the system reaches a state sufficiently close to the quasi-thermal equilibrium in which the carrier density is still elevated, but smaller than the intrinsic thermal equilibrium density at the elevated temperature, then the signal can become negative.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献