Analysis of the impact of electromagnetic fields on UAV flight control systems in EHV–UHV DC overhead transmission lines

Author:

Li Jie1ORCID,Kong Lingkai1,Chu Minghao2

Affiliation:

1. Yellow River Conservancy Technical Institute 1 , Kaifeng, Henan 475004, China

2. Zhengzhou University 2 , Zhengzhou 450001, China

Abstract

The impact of operating voltage on Unmanned Aerial Vehicle (UAV) inspection and control is mainly manifested as electromagnetic interference, where the electric field mainly affects the distribution of space charges and ions, exhibiting adsorption effects on UAVs, and the magnetic field interferes with airborne magnetometers, disrupting the navigation system of UAVs. Under power frequency conditions, the electromagnetic field of alternating current exhibits alternating characteristics, and it only polarizes near the wire to form space charges or ion currents, with little effect at further distances. However, the variation in the magnetic field in one cycle is zero (positively correlated with alternating current), so its impact on UAVs is not particularly significant. Under direct current conditions, a constant current is introduced into the wire, and the electric field polarized around the wire generates a constant property of charge or ion current, resulting in a relatively larger electric field strength and a wider range of influence. At the same time, the constant current generates a constant magnetic field, which is applied to the airborne magnetometer, equivalent to adding a constant interference source, thus having a significant impact on the inspection and control of UAVs. This article uses ANSYS software to conduct electromagnetic field simulation analysis on DC transmission lines of different voltage levels.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3