Weak and strong chirality-anomaly-manipulations in a superconducting Weyl semimetal sandwich structure

Author:

Li Mengyao1ORCID,Wang Zhouyu2,Ding Zixuan2ORCID,Tao Yongchun2ORCID,Huang Fengliang3

Affiliation:

1. College of Science, Nanjing Forestry University 1 , Nanjing 210037, Jiangsu, China

2. Department of Physics, Nanjing Normal University 2 , Nanjing 210023, China

3. School of Electrical and Automation Engineering, Nanjing Normal University 3 , Nanjing 210023, China

Abstract

We investigate the quantum interference of the electron–hole conversions from the two interfaces in a Weyl semimetal (WSM)-based hybrid structure, in which a superconducting WSM is sandwiched in between two normal ones. The quantum interference is characterized by the chirality-anomaly-manipulation (CAM). It is found that only low energy is in favor for s-wave BCS pairing states. The Andreev reflection (AR) chirality blockade can be tuned by the stagger angle α for the relative orientation of paired Weyl points, accompanied by an AR bipolar chirality diode. Thus, a strong CAM is indicated for the electron–hole conversion. However, the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) pairing states have no energy preference, with the weak and strong CAMs being near and far away from the zero energy, respectively. More interestingly, a perfect AR with the normal reflection suppressed thoroughly can be obtained at any α as a result of the FFLO paring with the same chirality. In addition, the conductance or noise power, which incorporates the contributions of the two paired Weyl nodes, not only, in turn, embodies the respective features of their contributions but also can be experimentally measured to discern between the BCS and FFLO paring states.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3