Affiliation:
1. Korea Institute of Fusion Energy 1 , Daejeon 34133, Republic of Korea
2. Princeton Plasma Physics Laboratory 2 , Princeton, New Jersey 08543, USA
Abstract
A double-sided electron energy analyzer is developed for studies of magnetic reconnection. It can measure electron energy distribution functions along two directions opposite to each other at the same time. Each side is composed of a floating reference grid, an energy selector grid, and a collector plate. The voltage of the selector grid is swept from −40 to 0 V with respect to the reference grid with a frequency of 1 MHz. This fast sweeping is required to resolve sub-Alfvénic changes in plasma quantities of the Magnetic Reconnection Experiment, where the typical Alfvénic time is a few microseconds. The reliability of the energy analyzer is checked in Maxwellian plasmas away from the reconnection region. In this case, the electron temperature computed from the electron energy distribution function agrees with measurements of a reference triple Langmuir probe. When it is located near the reconnection region, the temperatures of the tail electron population from both sides, facing into the electron flow and facing away from it, exceed the bulk electron temperature measured by the Langmuir probe by a factor of about 2.
Funder
Office of Science
Korea Institute of Fusion Energy
NASA
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献