Investigation of magnetization dynamics in trilayer width-modulated nanowires

Author:

Kuchibhotla Mahathi1ORCID,Haldar Arabinda1ORCID,Adeyeye Adekunle Olusola23ORCID

Affiliation:

1. Department of Physics, Indian Institute of Technology Hyderabad 1 , Kandi 502284, Telangana, India

2. Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore 2 , Singapore 117576

3. Department of Physics, Durham University 3 , South Road, Durham, DH1 3LE, United Kingdom

Abstract

We have investigated the magnetization reversal processes and dynamic behavior of trilayered Py(50 nm)/Pd(tPd)/Py(20 nm) nanowires with periodic width modulation as a function of spacer layer thickness tPd in the range from 0 to 10 nm and compared them with single-layer nanowires. The ferromagnetic resonance spectra show more than three modes that result from a non-uniform demagnetizing field in width-modulated nanowires. We observe that the spacer layer thickness influenced the ferromagnetic resonance spectra, which showed different numbers and values of modes and frequencies due to the different magnetization configurations for different spacer layer thicknesses. We also found that the two ferromagnetic layers are exchange-coupled for tPd = 2 nm nanowire arrays, showing the sharp switching of magnetization from the static measurements and sharp frequency jump from 13.6 to 14.7 GHz around −18 mT from the dynamic measurements. However, for tPd = 10 nm, the two layers switch at different fields, indicating a gradual decrease in magnetization as the reversal is mediated through dipolar coupling. The origin of modes is well explained from the spatial mode profiles of top and bottom magnetic layers. The dynamic responses in this spin-valve-type structure are useful for designing microwave-based spintronic devices.

Funder

Science and Engineering Research Board

Royal Society

Wolfson Foundation

Publisher

AIP Publishing

Reference41 articles.

1. The 2021 magnonics roadmap;J. Phys. Condens. Matter,2021

2. The building blocks of magnonics;Phys. Rep.,2011

3. Advances in magnetics roadmap on spin-wave computing;IEEE Trans. Magn.,2022

4. Magnon spintronics;Nat. Phys.,2015

5. Magnon transistor for all-magnon data processing;Nat. Commun.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3