Experimental study on control of transverse jet mixing by arrayed plasma energy deposition

Author:

Chao Zhenhou1ORCID,Gao Feng1,Wang Hongyu23ORCID,Wang Gang23ORCID,Li Jie23

Affiliation:

1. Air and Missile Defense College, Air Force Engineering University 1 , Xi'an 710051, China

2. Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center 2 , Mianyang 621000, China

3. National Key Laboratory of Aerospace Physics in Fluids, China Aerodynamics Research and Development Center 3 , Mianyang 621000, China

Abstract

The efficient and prompt mixing of fuel is crucial in the operation of scramjet engines. This paper presents the findings from wind tunnel experiments that examined the influence of plasma energy deposition on transverse jets at a Mach number of 6.13. The study took into account various inlet flow total pressures and momentum flux ratios between the jet and the main flow. Utilizing a database containing time-resolved intensities from instantaneous schlieren images, we perform turbulence analysis employing various techniques such as the root mean square, fast Fourier transform, proper orthogonal decomposition, and the two-point correlation method. Specifically, we aim to compare and analyze the pulsation characteristics and spatial self-organization of the jet flow field, both with and without energy deposition control. The findings reveal that intermittent “hot bubbles” created by plasma energy deposition interact with the bow shock induced by the jet, resulting in the formation of an array of large-scale vortices. These vortices emerge as the dominant structures within the jet, effectively amplifying its pulsations. At low inlet flow pressures, energy deposition primarily disrupts the jet, causing large-scale vortices to propagate primarily within the jet plume region. However, at high inlet flow pressures, the impact of energy deposition extends to both the jet and the turbulent boundary layer, encompassing their respective disturbance ranges. Increasing the inlet flow pressure constraints the evolution of large-scale vortices, thus limiting the efficacy of energy deposition in governing the mixing process.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3