Photovoltaic effect on silicon–alumina–ferromagnet tunnel junction providing insights about spin-dependent molecular spintronics solar cells

Author:

Suh Pius1ORCID,Tyagi Pawan1ORCID

Affiliation:

1. Center for Nanotechnology Research and Education, Mechanical Engineering, University of the District of Columbia , Washington, District of Columbia 20008, USA

Abstract

The study focuses on the observation of the photovoltaic (PV) effect on Si/AlOx/FM semiconductor–insulator–ferromagnetic metal (SIFM) structure. Utilization of ∼10 nm NiFe film as the top ferromagnet (FM) layer was permeable for sufficient light radiation necessary for reaching the silicon substrate for the generation of electron–hole pairs upon photoexcitation. The effect of light intensity and magnetic field was studied on the SIFM’s PV response. We also investigated the role of silicon doping and the AlOx tunnel barrier between Si and FM in exploring suitable band bending necessary for separating the electron–hole pairs. Increasing the dopant density in Si and a damaged AlOx tunnel barrier quenched the PV effect. Ferromagnet/Insulator/Ferromagnet (FMIFM) was also studied to gain deeper mechanistic insights into the spin-dependent photovoltaic effect observed on FM/AlOx/FM tunnel junction-based molecular spintronics devices. Bridging of magnetic molecules between the Si and FM electrodes of SIFM increased the overall device current by establishing additional parallel conduction channels along with the AlOx tunnel barrier. However, SIFM with molecular conduction channels did not produce a PV effect. This study reported the PV effect on well-designed SIFM and opened possibilities for exploring new systems. More importantly, this paper provided insights into the role of molecule-induced exchange coupling in transforming an ordinary, cheap, and widely available ferromagnet into a semiconductor-like material capable of showing PV.

Funder

National Science Foundation

National Nuclear Security Administration

National Aeronautics and Space Administration

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3