Fast fluid–structure interaction simulation method based on deep learning flow field modeling

Author:

Hu JiaweiORCID,Dou ZihaoORCID,Zhang WeiweiORCID

Abstract

The rapid acquisition of high-fidelity flow field information is of great significance for engineering applications such as multi-field coupling. Current research in flow field modeling predominantly focuses on low Reynolds numbers and periodic flows, exhibiting weak generalization capabilities and notable issues with temporal inferring error accumulation. Therefore, we establish a reduced order model (ROM) based on Convolutional Auto-Encoder (CAE) and Long Short-Term Memory (LSTM) neural network and propose an unsteady flow field modeling method for the airfoil with a high Reynolds number and strong nonlinear characteristics. The attention mechanism and weak physical constraints are integrated into the model architecture to improve the modeling accuracy. A broadband excitation training strategy is proposed to overcome the error accumulation problem of long-term inferring. With only a small amount of latent codes, the relative error of the flow field reconstructed by CAE can be less than 5‰. By training LSTM with broadband excitation signals, stable dynamic evolution can be achieved in the time dimension. CAE-LSTM can accurately predict the forced response and complex limit cycle behavior of the airfoil in a wide range of amplitude and frequency under subsonic/transonic conditions. The relative errors of predicted variables and integral force are less than 1%. The fluid–structure interaction framework is built by coupling the ROM and motion equations of the structure. CAE-LSTM predicts the time series response of pitch displacement and moment coefficient at different reduced frequencies, which is in good agreement with computational fluid dynamics, and the simulation time savings exceed one order of magnitude.

Funder

National Natural Science Foundation of China

National Numerical Wind Tunnel Project of China

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3