Two-parameter bifurcations analysis of a delayed high-temperature superconducting maglev model with guidance force

Author:

Dai Qinrui1ORCID

Affiliation:

1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Abstract

A modified high-temperature superconducting maglev model is studied in this paper, mainly considering the influence of time delay on the dynamic properties of the system. For the original model without time delay, there are periodic equilibrium points. We investigate its stability and Hopf bifurcation and study the bifurcation properties by using the center manifold theorem and the normal form theory. For the delayed model, we mainly study the co-dimension two bifurcations (Bautin and Hopf–Hopf bifurcations) of the system. Specifically, we prove the existence of Bautin bifurcation and calculate the normal form of Hopf–Hopf bifurcation through the bifurcation theory of functional differential equations. Finally, we numerically simulate the abundant dynamic phenomena of the system. The two-parameter bifurcation diagram in the delayed model is given directly. Based on this, some nontrivial phenomena of the system, such as periodic coexistence and multistability, are well presented. Compared with the original ordinary differential equation system, the introduction of time delay makes the system appear chaotic behavior, and with the increase in delay, the variation law between displacement and velocity becomes more complex, which provides further insights into the dynamics of the high-temperature superconducting maglev model.

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3